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Abstract

Complex software-intensive systems are often described as systems of systems (SoS)
due to their heterogeneous architectural elements. As SoS behavior is often only under-
standable during operation, runtime monitoring is needed to detect deviations from
requirements. Today, while diverse monitoring approaches exist, most do not provide
what is needed to monitor SoS, e.g., support for dynamically defining and deploying
diverse checks across multiple systems. In this paper we report on our experiences of
developing, applying, and evolving an approach for monitoring an SoS in the domain
of industrial automation software, that is based on a domain-specific language (DSL).
We first describe our initial approach to dynamically define and check constraints
in SoS at runtime and then motivate and describe its evolution based on require-
ments elicited in an industry collaboration project. We furthermore describe solutions
we have developed to support the evolution of our approach, i.e., a code generation
approach and a framework to automate testing the DSL after changes. We evaluate
the expressiveness and scalability of our new DSL-based approach using an industrial
SoS. We also discuss lessons we learned. Our results show that while developing a
DSL-based approach is a good solution to support industrial users, one must prepare
the approach for evolution, by making it extensible and adaptable to future scenarios.
Particularly, support for automated (re-)generation of tools and code after changes and
automated testing are essential.
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1 Introduction

Many software-intensive systems today are systems of systems comprising hetero-
geneous and interrelated architectural elements. Common properties of SoS include
decentralized control, support for multiple platforms, inherently volatile and con-
flicting requirements, and independent and continuous evolution of its heterogeneous
parts (Maier 1998; Nielsen et al. 2015). As SoS behavior is often only fully understand-
able during operation, system testing is not sufficient to determine compliance with
requirements. Instead, the behavior of the constituent systems and their interactions
need to be continuously monitored and checked during operation to detect and analyze
deviations. Checks include the occurrence, order, and timing of runtime events (tem-
poral behavior) (Dwyer et al. 1999), the interaction of systems (structural behavior),
or properties of runtime data (data checks) and probabilistic properties (e.g., related
to performance) (Autili et al. 2015).

Different research communities have been developing runtime monitoring
approaches for various kinds of systems and diverse types of checks. Examples include
requirements monitoring (Vierhauser et al. 2016a; Maiden 2013; Robinson 2006),
monitoring of architectural properties (Muccini et al. 2007), complex event process-
ing (Volz et al. 2011), runtime verification (Calinescu et al. 2012; Ghezzi et al. 2012),
monitoring of probabilistic properties (Cailliau and van Lamsweerde 2017; Autili et al.
2015; Sammapun et al. 2005; Zhang et al. 2011), and resource monitoring (van Hoorn
et al. 2012; Eichelberger and Schmid 2014), to name but a few. The expected runtime
behavior is often expressed formally using temporal logic (Cailliau and van Lam-
sweerde 2017; Viswanathan and Kim 2005; Chen et al. 2004; Gunadi and Tiu 2014;
Bauer et al. 2006). Furthermore, domain-specific languages are employed to facili-
tate the definition of constraints (Paschke 2005; Robinson 2008; Baresi and Guinea
2013), which are then checked based on events and data collected from systems at
runtime, e.g., via probes instrumenting systems (Mansouri-Samani and Sloman 1993;
Eichelberger and Schmid 2014).

Runtime monitoring in SoS, however, is particularly challenging as, e.g., tempo-
ral, structural, and data constraints need to be checked for a high number of events
collected from heterogeneous systems. Furthermore, many SoS are cyber-physical
systems (Bures et al. 2014) that need to run in 24/7-mode for weeks or even months
without interruption. Constraints thus need to be defined and deployed dynamically,
e.g., in response to issues discovered during operation, and continuously checked to
ensure live and instant feedback on requirements violations to users. Many existing
runtime monitoring approaches, however, are restricted to particular technologies or
types of constraints or are limited to offline analysis of event traces (Vierhauser et al.
2016a).

To address these challenges, we have been developing a domain-specific con-
straint language aimed at industrial end users, who often lack deep programming
skills, to ease the definition of various types of constraints in SoS. Our DSL-based
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approach supports monitoring the behavior of industrial SoS at runtime, i.e., checking
the order, occurrence and timing of events monitored at runtime as well as checking
data attached to events, e.g., to ensure certain ranges. We developed the language
iteratively to address industrial needs, i.e., to cover all types of constraints elicited in
multiple workshops together with industrial users. We described our experiences with
the development of the first version of the constraint language in an earlier publica-
tion (Vierhauser et al. 2015).

As described in this publication, we decided to only provide features for actual
use cases, to keep the language simple and to meet our industry partner’s expecta-
tions (YAGNI—*“you aren’t gonna need it”). When continuing work with our industry
partner, to support new use cases, the language needed to be evolved. For example, it
became necessary to express optional events and negations and to allow more com-
plex data analyses. Also, industrial users requested additional language features, e.g.,
event-based constraint evaluation criteria to evaluate a constraint when a certain event
occurs, or composite constraints to allow combining different (types of) constraints.
Furthermore, we conducted a usability study (Rabiser et al. 2016) with industrial end
users that revealed usability flaws to be addressed by modifying the constraint DSL and
tool support for writing constraints and interpreting constraint violations. A detailed
comparison with other approaches in the field (Rabiser et al. 2017) also motivated us
to further improve our approach.

In this paper we describe our experiences of developing the initial DSL-based
approach (v.1) and then evolving it (leading to v.2). We evaluate the expressiveness
and scalability of our new approach and discuss DSL evolution in general, i.e., the
types of changes and their impacts, and the lessons we learned from evolving our
initial approach. Particularly, we discuss how we improved our approach regarding
extensibility and maintainability in future evolution scenarios.

Specifically, we claim the following contributions:

— We motivate our work with an industrial case of monitoring a metallurgical plant
automation system, an example of a large-scale industrial SoS. We describe an
industrial scenario and discuss the challenges for constraint checking in SoS at
runtime. We describe the DSL-based approach we developed to address these
challenges, which allows to dynamically define and incrementally (Egyed 2006;
Vierhauser et al. 2010) check constraints at runtime to support SoS monitoring.
We have described parts of this contribution in our earlier publication (Vierhauser
et al. 2015).

— We motivate and describe the evolution of this initial approach to address new
(user) requirements. We describe the (types of) necessary changes and discuss
their impacts.

— We present a new version of our DSL-based approach and also describe a solution
for automated testing we developed to better support the (future) evolution of
our approach. We present an evaluation based on the use of our approach in an
industrial SoS, specifically, we assess its expressiveness and scalability, also in
comparison to the first version of our approach.

— We conclude with a general discussion of the evolution of our DSL-based approach.
We revisit and extend the lessons we learned from developing our initial approach
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to reflect what we learned during the evolution of our approach. We also discuss
related work, particularly also regarding DSL evolution.

2 Industrial scenario and challenges

Our industry partner—Primetals Technologies, a joint venture of Siemens and Mit-
subishi Heavy Industries—is one of the world’s leading engineering and plant-building
companies in the iron, steel, and aluminum industries. The company provides machin-
ery, hardware, software, and automation systems for steel producers around the globe.
We use the example of a plant automation system of systems (PAS) developed and
maintained by Primetals Technologies to illustrate the runtime monitoring and con-
straint checking challenges. The PAS automates, optimizes, and tracks different stages
of the metallurgical production process. It comprises systems for process automation
of melting iron ore and raw materials to produce iron, refining liquid iron and other
materials to produce steel, and casting liquid steel into solid steel slabs. These inde-
pendently developed automation systems for iron, steel, and continuous casting (cf.
Fig. 1) size up to several million LoC. The systems have heterogeneous architectures,
they have been developed using diverse technologies, and they frequently interact,
e.g., when exchanging data controlling the metallurgical production process.

Although the different software systems in the PAS are engineered independently,
there are manifold dependencies in the metallurgical process that need to be con-
sidered when planning their joint operation. For instance, liquid iron is needed for
producing liquid steel, which is then input to casting solid steel slabs. The PAS is
further connected to legacy and third-party systems leading to additional complexity.
Furthermore, there are dependencies between components within particular systems.
For instance, a component optimizing the arrangement of steel slabs on a strand in the
caster—to minimize scrap and to ensure steel quality—relies on information provided
by other components such as material tracking.

Besides such requirements, which cross-cut different systems or components, there
are also requirements affecting particular components. For example, the component
handling the selection of material from a silo and the subsequent transportation on
a conveyor belt, has to ensure that events happen in a specific sequence and within
a certain time frame to guarantee the uninterrupted and continuous flow of material.
Although PAS requirements and their dependencies are carefully managed during
development, it is crucial to monitor them after deployment to detect inaccurate and
erroneous behavior at runtime. This is particularly important after upgrading compo-
nents, a frequent case when modernizing existing plants.

2.1 Industrial runtime monitoring scenario

In the following we describe a typical scenario for runtime monitoring based on an
earlier qualitative study with developers and engineers of our industry partner (Vier-
hauser et al. 2012). The scenario shows that constraints need to be defined and deployed
dynamically and checked continuously at runtime. For the scenario we assume that
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Fig. 1 Industrial scenario for runtime monitoring of SoS

the PAS is running at the customer’s site and an infrastructure for runtime monitoring
is set up to collect events and data about the running systems. The scenario shown in
Fig. 1 starts with a customer report describing a deviation from the expected system
behavior: after upgrading several parts, the initialization of the casting system does
not complete within the expected time frame, thus delaying the process of casting
liquid steel to solid steel slabs. Due to the interplay of several systems there are many
possible reasons for this behavior and both hardware and software issues might have
caused the problem.

(1) The service engineer reviews the incoming customer report and remotely con-
nects to the customer’s PAS to investigate the issue by checking the running systems.
(2) The service engineer uses the monitoring infrastructure to retrieve more details
about the state of the PAS, e.g., by analyzing recorded event data to reveal the origin
of the reported problem or by reviewing violations that might have been recorded in
the past. (3) If necessary, the service engineer adds new constraints to the monitoring
infrastructure. Depending on the type of problem different types of constraints may
be necessary, for instance, to check temporal properties of events or data ranges. In
the case of the delayed initialization of the caster the service engineer adds a new
constraint checking the execution of the initialization steps within a time frame of
60s. The constraint is immediately activated in the monitoring infrastructure to detect
deviations from the specified behavior in the running PAS. (4) The service engineer is
notified by the monitoring infrastructure as soon as the initialization phase is delayed
again. Violations of the new constraint are detected and can be instantly reviewed by
the engineer.
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2.2 Challenges

Several challenges for defining and checking constraints can be derived from our
industrial case:

(C1) Constraint diversity Different types of constraints are needed to monitor the
industrial SoS. This covers global invariants and range checks of variables across the
SoS, temporal constraints on the occurrence and expected order of events, or architec-
tural rules constraining the allowed interactions of components. Constraints are further
required to measure properties such as performance or resource consumption. Regard-
ing runtime monitoring, a wide variety of approaches exist that focus on particular
types of constraints [see Table 1 and (Rabiser et al. 2017)]. While these approaches
focus on specific types of constraints, there is a lack of unified approaches covering
multiple types of constraints, as needed in our SoS runtime monitoring context.

(C2) Dynamic definition and runtime management of constraints Constraints are
typically not defined once before the system is put into operation but dynamically
when needed. For instance, as our industrial scenario showed, engineers may need
to define additional constraints on the fly when investigating an issue reported by a
customer. Furthermore, SoS evolve continuously and are configured to address specific
requirements. The constraints thus do not remain stable but need to co-evolve with the
system to adapt to certain monitoring scenarios (Rabiser et al. 2015). Many existing
approaches do not support the dynamic definition and management of constraints at
runtime (see Table 1).

(C3) End-user definition of constraints End-user support for writing constraints
becomes a primary issue, as a runtime monitoring environment and its constraint
checking mechanism will be used in practice by both engineers and maintenance
personnel. While many existing constraint languages address the needs of software
developers (see Table 1), writing new or maintaining existing constraints is much
harder for users without a deep programming background.

While diverse constraint languages have been developed, e.g., for requirements-
level monitoring techniques (van Lamsweerde 2009; Robinson 2008; Skene and
Emmerich 2005; Whittle et al. 2010), UML-based monitoring approaches (Zhang et al.
2008; Kiviluoma et al. 2006), or formal runtime verification techniques (Viswanathan
and Kim 2005; Chen et al. 2004; Gunadi and Tiu 2014; Bauer et al. 2006), many do
not address the described challenges. Most existing languages support specific types
of constraints. For example, some approaches focus on monitoring probabilistic prop-
erties (Cailliau and van Lamsweerde 2017; Autili et al. 2015), while others emphasize
temporal properties, or support aggregating and checking data. Additionally, most
existing approaches have been developed for a particular application domain—e.g.,
service-based systems (Zhang et al. 2008) or business processes (Luckham 2011)—and
would be hard to apply in other areas. Furthermore, many existing constraint languages
are deemed inconvenient by industrial end users as they require deep understanding
of formal concepts or lack tool support.

As summarized in Table 1, many existing constraint languages thus do not
fully support all three challenges in SoS monitoring described above. For instance,
Spanoudakis et al. (2009) present SERENITY, a framework for monitoring secu-
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rity and dependability properties. Monitoring rules are expressed as EC-Assertions,
a temporal formal language based on the Event Calculus. EC-Assertions are used
to detect violations within streams of runtime events, which are are provided by
different distributed sources. The language is XML-based and provides language sup-
port for event occurrences such as Happens, HoldsAt, or Terminates. Viswanathan
and Kim (2005) developed two constraint languages for their MaC (Monitoring and
Checking) architecture: PEDL (Primitive Event Definition Language) for writing low-
level specifications and MEDL (Meta Event Definition Language) for defining safety
requirements. This separation allows to adapt to different implementation languages
and specification formalisms (e.g., Java-MaC (Kim et al. 2004) for Java programs).
Baresi and Guinea (2013) present mlCCL, the Multi-layer Collection and Constraint
Language part of the ECoWare framework for monitoring service-based systems.
Besides constraints for analyzing events, the language also provides capabilities for
defining how to collect messages or key performance indicators and how to aggregate
data from multiple objects. Montali et al. (2014) present Declare, a declarative busi-
ness process constraint language part of the Mobucon EC monitoring framework. The
language is based on the Event Calculus and allows defining sets of rules that must be
satisfied in order to correctly execute a given process. They distinguish between four
different types of constraints: existence, choice, relation and negation. Bertolino et al.
(2011) present a property-driven approach for runtime monitoring. A property meta-
model allows the definition of quantitative and qualitative properties. The approach
further distinguishes between abstract properties for generic declarations, descrip-
tive properties describing guaranteed properties, and perspective properties describing
system requirements. The approach uses the GLIMPSE framework for monitoring dis-
tributed systems and checking the properties at runtime. Aktug et al. (2008) present
an approach for monitoring security properties. They use a security specification
language called ConSpec to describe automata for security requirements. Existing
work also often uses temporal logic to support monitoring software systems. Sev-
eral authors have shown the expressiveness and usefulness of such formalisms (Chen
et al. 2004; Gunadi and Tiu 2014; Bauer et al. 2006). Cailliau and van Lamsweerde
(2017) present an approach for system monitoring and (self-)adaptation that relies on
specifying goals and obstacles using probabilistic linear temporal logic. Based on the
model, their approach can decide when system adaptation should be triggered and
then adapt the system on the fly. They evaluated their approach using an ambulance
dispatching system. Zhang et al. (2011) defined a formal property specification lan-
guage called Probabilistic Timed Property Sequence Chart (PTPSC), a probabilistic
and timed extension of Property Sequence Charts (PSC). The authors describe a for-
mal grammar-based syntax they use to generate a probabilistic monitor combining
timed Biichi automata and a sequential statistical hypothesis test process. They also
present a tool based on PTPSC, the WS-PSC Monitor, that supports runtime moni-
toring. Sammapun et al. (2005) present RT-MaC, an extension of MaC (Kim et al.
2004) with the capability to verify timeliness and reliability correctness by providing
quantitative and probabilistic property specifications. This is achieved by introducing
time-bound temporal operators and probabilistic operators.
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Fig.2 The main components of our DSL-based approach. The numbers indicate how the different compo-
nents interact in a typical scenario. The components marked with an ‘E’ had to be adapted when evolving
the DSL-based approach (cf. Sects. 4, 5)

3 DSL-based approach v.1

We developed a DSL-based approach (Vierhauser et al. 2015)—based on an existing
incremental checker (Egyed 2006; Vierhauser et al. 2010)—to address the challenges
discussed above. We ensure that violations of requirements can be reported instan-
taneously to users monitoring an SoS. The approach further supports the dynamic
definition and deployment of constraints at runtime—i.e., constraints can be added or
modified without stopping the checker or the monitored systems—and provides tool
support for end-users.

We first describe the key assumptions of our approach and then provide details
on its main components (cf. Fig. 2), i.e., our DSL and the editor supporting industrial
users in the definition of constraints using this DSL (Constraint DSL; CDSL), the com-
ponents supporting compiling and instantiating constraints at runtime to generate the
input for the constraint engine (Constraint Management), and the components support-
ing constraint checking and error handling (Constraint Engine and Error Handler).
These components of our DSL-based approach are typical components of a DSL-based
approach (Van Deursen et al. 2000; Spinellis 2001).

3.1 Key assumptions

We assume a stream of events (cf. Fig. 3) observed at runtime by a monitoring
infrastructure. In our monitoring approach these events are collected in an event
model (Vierhauser et al. 2016b) also managing arbitrary data attached to specific
events. The event model enables checking across system boundaries by linking events
provided by probes instrumenting different systems. It also provides the foundation
for tools visualizing behavior, persisting event logs, or checking constraints on events.
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Events are distinguished by their type. Types can be arranged hierarchically to reflect
the location in the system structure. For example, in the PAS Caster system the event
type “Optimizer.optimize_START” is a child of the “Optimizer” type, which again is
a child of the “Caster” type. Furthermore, events are distinguished by their source,
i.e., the probes instrumenting systems or components in the SoS. Each event has a
time stamp and arbitrary data can be attached, e.g., primitive data types, objects, as
well as arrays and lists of data types or objects. Event data can also carry performance
information about the instrumented system.

3.2 Constraint DSL

We conducted a series of workshops and interviews with engineers and project man-
agers of our industry partner to elicit requirements for a constraint language for SoS
runtime monitoring, based on concepts from existing constraint languages. Emphasiz-
ing usefulness and practical applicability, we developed the CDSL allowing engineers
to specify temporal, structural, and data constraints on events and data.

Each constraint written in the CDSL starts with a description of the trigger event
activating the evaluation of the constraint (cf. Fig. 3). The trigger specification is fol-
lowed by a condition statement. Conditions can be defined to check the past occurrence
of an event before the trigger event; the future occurrence of a (sequence of) event(s)
after the trigger event; or data attached to the trigger event. Arbitrary or specific orders
of sequences can be defined.

Conditions on the past or future occurrence of events are temporal constraints for
checking restrictions regarding the occurrence or sequential order of events, i.e., they
are pre- or post-conditions on these events. For simple order restrictions, an event of
a certain type must occur before or after an event of a specific type, e.g., one event of
type B must occur after any event of type A (required sequence [A, B]). For hard time
limits, the occurrence of an event of a certain type is required within a certain time,
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Listing 1 Examples of three constraints from the PAS.

//future occurrence constraint checking a sequence of events with a hard time limit
trigger = if event "ControlAdapter.requestOptimization" occurs
condition = events
"Optimizer.optimize_START" ,
"Optimizer.fetchData" ,
"Optimizer . caculateFINISHED" ,
"Optimizer.retrieveOptimizationResult",
"Cutting . forwardOptimizationResult"
occur consecutively within 10 seconds.

//past occurrence constraint with a hard time limit
trigger = if event "Tundish.carLockedInCastPosition" occurs
condition = event "Tundish.ladleArrived"

has occurred in the last 500 milliseconds.

//data constraint checking the data attached to the event System.discInfo
trigger = if event "System.discInfo" occurs
condition = data("discData","Drives/FreeDiscPercentage")>20.

e.g., an event of type B must occur within a maximum time of 5s after an event of
type A has occurred.

Data constraints check certain items contained in runtime data objects attached to an
event. For numeric values boundary checks can be defined, e.g., to ensure a data item
is within a certain range. For character sequences checks for equality can be defined.
Data conditions in our DSL can also contain functions, e.g., to count the number of
elements in a list, to check whether a list of data objects contains a certain item, or to
calculate the maximum, minimum, or average of a set of values. It is also possible to
combine past and future occurrence checks with data checks, e.g., to determine if a
certain event occurred with the attached data fulfilling a particular condition.

Listing 1 shows three examples from the PAS: a constraint checking the future
occurrence of an event sequence in a particular order including a hard time limit for
the optimization system cycle; a constraint on the past occurrence of a particular event
with a hard time limit checking that the ladle has arrived before starting casting; and
a data constraint checking that free disc space is larger than 20%.

We also developed a DSL Editor that provides user support for writing constraints
in our DSL, including meta-data such as a description, a custom error message, or a
severity class. We refer to a constraint defined in the DSL Editor as a Constraint Def-
inition (cf. Fig. 2). We employed the Java-based frameworks Xtext and Xtend (http://
www.eclipse.org/Xtext) for developing the CDSL and end-user guidance in the editor.
These frameworks allow adding new language constructs in a rather straightforward
manner as the DSL and the transformation steps are treated separately and automation
is provided, e.g., for supporting syntax highlighting and auto completion in the editor
as shown in Fig. 4.

3.3 Constraint management

The Constraint Manager tool (cf. Fig. 4) allows activating, deactivating, and modifying
(groups of) constraints.
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Fig. 4 Tool support for defining and managing constraints (constraint shown in screenshot already based
on v.2 of our DSL-based approach)

As runtime monitoring presumes the continuous (re-)evaluation of constraints,
dynamic constraint management and an incremental evaluation strategy are advis-
able to ensure fast feedback to users in case of violations. We therefore decided to
use an incremental consistency checker (ICC) developed in our previous work on
consistency checking of design models (Egyed 2006; Vierhauser et al. 2010, 2012).

As soon as the Constraint Definition is transmitted to the checking server, it is thus
on the fly compiled to executable Java code, i.e., to a Compiled Constraint Definition to
make it usable by the ICC. The Constraint Instance Store (cf. Fig. 2) is responsible for
maintaining and instantiating compiled constraints. An active constraint is not instan-
tiated permanently but only if an event occurs that matches the trigger event defined
for this constraint. Each created constraint instance is completely self-contained and
can be evaluated independently. This ensures that even for a high number of incoming
events only selected constraints are instantiated and checked.

Please note that while the constraints written in our DSL are currently translated
to the underlying language of the ICC, using Xtext and Xtend we could also trans-
late the constraints to a different target language and thus use a different engine for
checking constraints. This also supports the “source-to-source” transformation pattern
introduced by Spinellis (2001).

3.4 Constraint engine and error handler

Constraint checking relies on the events provided by the REMINDS Runtime Mon-
itoring Framework (Vierhauser et al. 2016b), which uses an Event Model to abstract
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Fig.5 Tool support for monitoring and reviewing constraint violations

from different systems and technologies as described under key assumptions above.
An Event Model Facade (cf. Fig. 2) allows the ICC—typically running on a separate
server—to register to the event model as listener and to connect with the runtime
monitoring infrastructure (i.e., the event model). The facade is informed about new
incoming events of certain types from specific sources.

Depending on the type of constraint, a constraint instance may need to be evaluated
immediately after instantiation (e.g., when checking data attached to the triggering
event or the past occurrence of events), or it may need to be postponed until future
events arrive. This task is handled by the Evaluation Delay Manager, which extends
the original ICC and adds capabilities for intercepting constraint evaluation requests.
It delays their evaluation and executes them only when required events arrive or as
soon as a specified timeout occurs.

If a constraint can be evaluated it is passed to the ICC’s actual Constraint Engine.
The constraint is evaluated by executing its code, thereby accessing the event model via
the Event Model Facade to retrieve events or data if necessary. If the constraint instance
evaluates without errors (the constraint condition evaluates to true), the instance is
immediately destroyed and removed from the engine. If the constraint instance is
violated and evaluates to false, further information on the violation is forwarded to the
Error Handler, i.e., a text explaining the violation.

The Runtime Error Manager tool displays this information as soon as it becomes
available to allow users reviewing occurring violations immediately. Violations can
also be persisted for later inspection. The Runtime Error Manager also provides a
graphical overview of all components of the SoS and their current state (cf. Fig. 5). It
allows reviewing constraint violations related to a specific component, events respon-
sible for constraint violations, and additional information provided by the constraints.

4 Evolving the approach

In our earlier work (Vierhauser et al. 2015), we demonstrated the expressiveness and
scalability of our approach for a set of constraints relevant to cover the requirements of
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one of our industry partner’s systems. However, when monitoring other systems, new
requirements emerged. For example, it became necessary to express optional events
and negations and to allow more complex data analyses. Furthermore, users requested
additional language features and tool support such as event-based evaluation criteria
and composite constraints to combine different (types of) constraints. In addition, we
conducted a usability study (Rabiser et al. 2016) with industrial end users that revealed
some usability flaws to be addressed by modifying the CDSL and tool support for
writing constraints and interpreting constraint violations.

We thus decided to evolve our approach. We aimed to address new requirements
and usability flaws. We also wanted to increase the maintainability and extensibility—
e.g., reengineer the code generation component to better support future changes—
and facilitate better testability and reliability, i.e., introduce an automated testing
framework and enable regression testing.

Extending our approach to address these issues required changes of different com-
ponents on different levels of granularity (cf. Fig. 2) with different impacts. While some
changes only required to perform minor modifications of the DSL’s grammar, other
changes required to change the code generation part or even adapting the underlying
constraint engine.

4.1 Levels of changes

We distinguish six levels of changes, which comprise the affected component and the
type and impact of changes, to ease discussing the requirements. The impacts on the
affected components and the necessary changes increase with each level. Please note
that in our discussion of the different levels of changes we distinguish between adap-
tation, i.e., adding a new capability or simple renaming activities, and reengineering,
i.e., major changes that do also affect the components’ internal structure. If a change to
the DSL-based approach requires changes at different levels, the highest level defines
the overall level of the change. Therefore, a change categorized as reengineering can
also include adaptations. We define the impacts of the different change levels as a
result of the estimated effort for requirements analysis plus the estimated effort for
development plus the estimated effort for testing. We mapped this result to a four-point
impact scale: low, medium, high, and very high.

Table 2 summarizes the six change levels. If the DSL’s grammar, the code genera-
tion, and the constraint engine are properly separated and their interfaces are clearly
defined, then a higher level change does not necessarily involve all lower level changes.
For instance, if a level 4 (code generation reengineering) change is required, it might
be the case that level 1 and 2 (syntax) changes are not necessary assuming that there is
a clear separation between code generation and the DSL grammar itself. If the gram-
mar or the generation code is not well structured, however, most lower level changes
will eventually result in higher level changes as they then require substantial structural
changes in addition to adaptation.
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Table2 Levels of changes for evolving our DSL-based approach and their impact

#: Name

Explanation

Impact

L1: DSL syntax
adaptation

L2: DSL syntax
reengineering

L3: Code
generation
adaptation

L4: Code
generation
reengineering

L5: Constraint
engine
adaptation

L6: Constraint
engine
reengineering

The DSL grammar is adapted, e.g.,
rename an existing (non-)terminal
symbol or add a new symbol

The DSL grammar is reengineered,
i.e., non-terminal symbols are
removed or restructured

The code readable by the engine,
generated from the compiled
constraints, is adapted internally,
e.g., by adding new code in
reaction to DSL changes

Here, the interfaces of the code
generation part are modified, e.g.,
in reaction to a bigger DSL syntax
refactoring

The constraint engine providing an
evaluation result based on the code
generated from the compiled
constraints is adapted, e.g., to add
new constraint types or additional
error information

The constraint engine is
reengineered, e.g., to improve
evaluation performance.
Adaptations made on levels 1-5
can eventually lead to such a
reengineering, if, e.g., adding a
new capability to the DSL required
adapting the engine and this
adaptation led to a decrease in
performance

Minor—renames might require
adapting existing constraints; new
symbols are not used so far

Medium—the original behavior of
existing constraints might be
affected and dependent components
need to be reengineered

Minor to Medium—as the interfaces
to other components are clearly
defined, adaptations mostly affect
only the result of the constraint
evaluation rather than other
components. Therefore, they will
usually not require further
adaptations

High—due to the high complexity of
the code generation part,
reengineering can be rather
expensive, particularly if interfaces
are modified. Can also lead to
reengineering of the constraint
engine

Medium to High—adding new
evaluation capabilities based on
existing ones can be very complex
if a completely new type of
behavior/constraint has been
introduced

Very High—due to the high
complexity of reengineering the
code processing the constraint
evaluations, which are executed in
parallel, also the effort for testing
this component is very high,
particularly because some errors
might only occur in very specific
test setups

4.2 Evolution requirements (required changes)

Based on the identified shortcomings of the first version of our DSL-based approach
and user requirements resulting from the usefulness study (Rabiser et al. 2016), we
derived requirements (required changes) for evolving the approach, which are sum-
marized in Table 3. For each requirement we provide a description, a rationale, and
list the impact (cf. Table 3).
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Table 3 Requirements for the evolution of our DSL-based approach
#: Name Description Rationale Impact
R1: Composite The approach should support ~ Monitoring the execution of a single L5 (2+4+5)
constraints combining and aggregating process in a system can require
the evaluation of multiple several independent, yet related
constraints constraints, e.g., if there are several
valid event sequences
R2: Multiple It should be possible to This is frequently required in L4 (2+4)
data checks perform data checks on practice, e.g., if in some event
multiple events in a sequences all events must have the
constraint same id stored in their data objects
R3: Cross-event  Data should be accessible It can be necessary to check if all L4 (2+4)
data access across events in a constraint events of a constraint belong to the
same action, which can be checked,
e.g., with an id in the events’ data.
R4: Multiple The approach should allow It is sometimes necessary to perform L4 (1+4)
data checks multiple data checks on one multiple checks on one event, e.g.,
for one event event to check both, the type and the
value of an analysis event
R5: Event-based It should be possible to Practical examples demonstrated that L3 (1+3)
evaluation evaluate constraints based it should be possible to force a
criteria on the occurrence of events sequence constraint to be evaluated
no later than when the start event of
the next event sequence occurs
R6: Multiple The approach should support  For instance, sometimes constraints L3 (1+3)
evaluation defining multiple evaluation shall be evaluated within a certain
criteria criteria in one constraint time span and until another event
occurs
R7: Flexible The CDSL should provide It is not always possible or desired to L4 (1+4)
event additional capabilities for check an event sequence just
sequences defining event sequences through a list of events that have to
such as negation, optional occur as sometimes multiple valid
events and arbitrary orders event sequences are possible
R8: Violation Constraint violations should Violation causes should not only be L5(4+5)
details provide more detailed available as strings, but together
information on the violation with details such as what (missing)
cause events caused the
violation (Vierhauser et al. 2017)
R9: Grammar The DSL’s grammar should The grammar of the first version of L3 (2+3)

consistency

be consistent

the CDSL allows inconsistent event
declarations as identified in our
usability study (Rabiser et al.
2016), which can have a negative
effect on the ease of writing
constraints
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5 DSL-based approach v.2

Several of the requirements described in Table 3 required major changes to the first
version of the DSL syntax and the code generation components [cf. components and
steps (1) and (2) in Fig. 2]. For the constraint engine and the Ul parts it was fortunately
sufficient to limit the changes to minor adaptations. We, however, also improved the
capabilities of our DSL-based approach to support future evolution. This included the
development of a testing framework to automate and parallelize testing of constraints,
which we then utilized for regression testing throughout the evolution of our DSL-
based approach.

In this section we first describe the changes we made to the constraint DSL to
address the requirements described above. Then we describe the changes to the code
generation approach and present the testing framework. Implementation was done by
one Master’s student, assisted by one PhD student, over the time of one and a half
years. Frequent meetings with senior researchers (co-authors of this paper) and the
industry partner Primetals Technologies helped to guide the implementation process.

5.1 Changes made in the constraint DSL

As a starting point for designing the new DSL grammar, we analyzed the first ver-
sion of the grammar for possible weaknesses regarding the introduction of the new
required functionality and potential future evolution. Based on these findings, we
derived all necessary grammatical changes and adapted the grammar. As it was essen-
tial to preserve the original intentions of the first version, i.e., making the language
comprehensible and easy to use for industrial users, we decided to limit the reengi-
neering of the grammar mainly to restructuring its non-terminal symbols to increase
the grammar’s modularity and extensibility. The changes visible to the user were kept
as minimal as possible. The new version of the grammar, especially its new structure,
focuses on supporting future changes without requiring structural changes or complex
refactorings. The full grammar is listed in the “Appendix”, examples for constraints
in the new grammar are presented in Listings 2 and 3 as well as in Table 4.

Specifically, we performed the following changes to the grammar:

Composite Constraints (cf. R1): we introduced a new high-level concept that allows
to combine different (types of) constraints. A constraint can now either be a composite
constraint combining several constraints or a single constraint. Constraints in a com-
posite constraint can be combined with AND or OR and their individual evaluation
contributes to the overall evaluation. It is also possible to nest them, meaning to create
composite constraints of composite constraints.

Multiple data checks (cf. R2): a data check can now be added to every event defined
in a constraint, which is particularly relevant for events in sequences (allowing to check
different data items attached to different events in a sequence).

Cross-event data access (cf. R3): events can now be mapped to a user-defined key
(expressed by: event_type as “key”). The data of these events can then be accessed

LEIT3

via this shortcut (“key”.data(“item-type”,“item-name”)).
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Listing 2 Example constraint checking a sequence of events in a cyclic optimization process.

trigger = if event "Optimization_Start" as "trigger" occurs
condition = events

"Fetch_Data"

where data("meta—data", "run—id") = "trigger".data("meta—data", "run—id")

AND data("meta—data", "cut—point") = "trigger".data("meta—data", "cut—point"),
? "Optimize_Run"

where data("meta—data", "run—id") = "trigger".data("meta—data", "run—id")

AND data("meta—data", "cut—point") = "trigger".data("meta—data", "cut—point"),
"Optimization_End"

where data("meta—data", "run—id") = "trigger".data("meta—data", "run—id")

AND data("meta—data", "cut—point") = "trigger".data("meta—data", "cut—point"),

occur
ignore others
until "Optimization_Start" occurs

Multiple data checks for one event (cf. R4): multiple data checks for one event can
now be combined using Boolean operators.

Event-based evaluation criteria (cf. R5): in the first version only time-based eval-
uation criteria were possible. With the new version we have introduced event-based
evaluation criteria, i.e., using “until ‘Event’ occurs” and “since ‘Event’ occurred” the
user can define that a specified event (sequence) has to occur before or after this event.

Multiple evaluation criteria (cf. R5 and R6): we replaced the evaluation criterion
“consecutively” (the defined sequence events must occur one after the other without
interruption by other events) from the first version with the term “ignore others” (the
defined sequence may be interrupted by other events) as the standard behavior of a
(sequence) constraint in our industrial use cases has been consecutively. Additionally
to “ignore others” an event sequence can now also be defined to have to occur “in any
order”.

Flexible event sequences (cf. R7): events (in sequences) can now also be negated
(must not occur) or made optional (may or may not occur).

Violation details (cf. R8): this requirement did not require any changes in the DSL.
Instead, to realize this requirement we adapted the internal structure of the Constraint
Engine component so that the violation cause (e.g., event missing, additional event,
wrong event) together with other information is now captured and forwarded as an
object to the Error Handler component. Further details regarding the diagnosis of
violations are discussed in another publication (Vierhauser et al. 2017).

Grammar consistency (cf. R9): We unified the way and the order of defining
events, data checks and scope checks throughout the language (cf. the grammar in
the “Appendix” vs. the grammar in our earlier publication Vierhauser et al. (2015)).

The examples in Listings 2 and 3 show constraints that use the new language fea-
tures. The examples are taken from the plant automation system of systems described
in Sect. 2.1. Further examples can be found in the evaluation section in Table 4.

Listing 2 shows a constraint from the Casting system that checks the correct
order of events in a cyclic optimization process. After the triggering event that indi-
cates the start of an optimization run, the events “Fetch_Data”, “Optimize_Run” and
“Optimization_End” have to occur until the next optimization cycle starts. The event
“Optimize_Run” (indicated by ‘?’) is optional since it may not occur if no optimiza-

@ Springer



894 Automated Software Engineering (2018) 25:875-915

Listing 3 Example constraint checking multiple data items of an iron tap analysis.

trigger = if event "Tap_End" occurs

condition = events

"Tap_Analysis" where data("analysis", "type") = "Metal" AND data("analysis","temperature") > 1690,

"Tap_Analysis" where data("analysis", "type") = "Slag" AND within( data("analysis","thickness"), 10%,
2.5)

occur in any order within 5 minutes

tion is necessary. Furthermore, other events that may occur in between the defined
sequence will not be considered (indicated by “ignore others”) and the constraint also
checks that the “run-id” and the “cut-point” data values of all events are equal (multiple
data checks).

The second example constraint (cf. Listing 3) is from the Iron system. It expects
two analyses to occur after the end of an iron tap from a blast furnace. The events
can occur in any order, however, one of them must be a metal analysis measuring a
temperature higher than 1690 degrees Celsius and the other one must report a slag
thickness that is around (10%) of 2.5 centimeters. Also, both events need to occur
within a time frame of five minutes.

5.2 New code generation approach

We did not redevelop the actual constraint engine, but we redesigned the code genera-
tion component to support the new language features described above and particularly
to ease future evolution. The code generation component takes a constraint written in
our DSL as input and produces the output required by the constraint engine, i.e., Java
code for the ICC.

Our new approach has a modular architecture—Fig. 6 compares version 1 and 2 of
the code generation architectures. In the first version, we used the Xtext framework to
parse the constraints and generate the Java code needed for the constraint evaluation
by combining several predefined code snippets (cf. all the snippets shown in Fig. 6 in
the Code Generation (Xtext/Xtend) part of version 1). This approach has two major
drawbacks regarding maintainability and extensibility: (i) generating code by assem-
bling code snippets is error-prone due to the high number of possible variations of how
the code snippets can be combined. Furthermore, it is very difficult to understand and
analyze and makes extending the code generation part with new functionality difficult.
(ii) The generated code is just code that is inserted into one monolithic method and
compiled at runtime by the constraint engine. Debugging this dynamically compiled
code is cumbersome because it is scattered across multiple files.

In our second version of the DSL-based approach, we thus developed a hybrid
approach aiming at getting the best trade-off between directly processing the constraint
information in the Xtext parser and using external helper classes. We use the code-
snippet assembly approach for the first parsing steps, i.e., until the type of the constraint
(e.g., a future constraint) is defined (cf. the remaining snippets shown in Fig. 6 in the
Code Generation (Xtext/Xtend) part of version 2). Then, a model (bottom right in
the figure) is instantiated with the rest of the variable information contained in the
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constraint (e.g., the defined events to occur or the defined evaluation criteria), which
is then handed over to a helper class that processes them and evaluates the constraint
accordingly.

5.3 Testing framework

Every change to the DSL requires thorough testing to ensure that new functionality
is implemented correctly and to ensure that the change does not affect the existing
functionality and constraints. During the evolution of our DSL-based approach, we
quickly reached a point where manual testing became infeasible: testing just one of the
several hundred possible constraint variations took us about two to five minutes due to
the need to (re-)start several components of our architecture, e.g., run the monitored
software and probes, run the monitoring server, and then manually check whether a
particular constraint evaluates correctly. We thus decided to automate and parallelize
the testing of our DSL-based approach.

Specifically, we developed a testing framework that allows defining test cases for
different (types of) constraints and automates repetitive tasks involved in testing our
DSL-based approach such as producing events simulating monitored software, deploy-
ing and checking constraints, and comparing the expected behavior as defined in the
test case with the actually observed behavior. The framework we developed is based
on JUnit and executes test cases in parallel wherever possible. We use a model of the
CDSL for creating constraints in the test cases, which allows changing the grammar
without the need to also adapt the test cases (if not removing features).

A CDSL test case (Listing 4 shows an example) is written in Java and comprises
a unique ID, a constraint to be checked, an event sequence to be produced and an
expected result, which can be a successful evaluation of the constraint or an expected
violation. This data is then used to deploy the specific constraint, to evaluate it against
the defined event sequence, and to compare the result of the evaluation with the defined
expected result.

The example test case in Listing 4 defines a constraint that checks if the
events Iron.SlagStart and Iron.TapEnd follow within a time period of 3s
after a triggering event Iron.TapStart. The expected event sequence thus is
Iron.TapStart, Iron.SlagStart and Iron.TapEnd. The event generator
component is used to create a predefined event sequence IRON_TS_TE_SS_2sec,
which fires the events Iron.TapStart, Iron.TapEndand Iron.SlagStart
within 2 s in exactly this order. Therefore, the expected sequence should be violated as
the second event to occur has a different event type as specified in the constraint. Thus,
the test case defines an expected violation of type Wrong Event Type, containing
information about the events which caused the violation (cf. requirement 8). When the
test is executed, the defined constraint is activated and instantiated. Afterwards, the
defined event sequence is produced, the constraint engine recognizes the triggering
event, evaluates the constraint and throws the violation, which is then compared to the
expected violation. If this comparison succeeds, the test case is reported as passed on
the command line interface.
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Listing 4 Example of a CDSL test case.

@Test

public void MF_within3sec_SeqOrderViol() throws Exception {
String constrID = "MF_within3sec_SeqOrderViol";
IConstraintGenerator cGen=getConstraintGenerator(constrID);

//create constraint (equal to):

//trigger = if event "Iron.TapStart" occurs

//condition = events "Iron.SlagStart", "Iron.TapEnd" occur within 3 seconds

ITestConstraint constraint=Gen. generateConstraint(ITestConstraint CONSIRAINT TYPE.RUTURE)
.setTriggerEvent(cGen. generateConstraintEvent("Iron. TapStart"))
.setEventsToCheck (cGen. generateConstraintEventSequence ("Iron. SlagStart", "Iron.TapEnd"))
.setWithinTime("3_seconds");

// IMEEvents for simulation run
List<IMEEvent> fireEventSequence;
synchronized (ParallelViolationTestRunner SEQUENCE (RFATIONIO(K) {
fireEventSequence = cGen. getIMEEventGenerator () . createEventSequence (IEventSequenceGenerator
.Sequence_IDs.IRON_TS_TE SS 2SEC) ;
}

//add expected errors

Set<IExpectedError> expected=new HashSet<>();

expected . add(ExpectedViolationFactory . createViolation (fireEventSequence . get(0) ,
fireEventSequence. get(1), ViolationErrorType WRONGTYFE) ) ;

addExpectedViolations(constrID, expected);

//execute the test
executeTestCase(constrID, constraint. getConstraintCode () ,fireEventSequence) ;

6 Evaluation

Based on the evaluation of the first version of our DSL-based approach (Vierhauser
etal. 2015) we aim to show that the new version of our approach still fulfills the existing
requirements and also supports the new ones. Specifically, our evaluation investigates
the expressiveness and the scalability and performance of the new version. A side goal
also was to demonstrate that the changes between version 1 and 2 did not introduce
any performance issues. To ensure a realistic and comparable evaluation, we again
monitored a simulated version of Primetals Technologies’ SoS.

Specifically, we investigate the following research questions in our evaluation:

RQI1—Is the DSL sufficiently expressive to allow its use in a real-world industrial
SoS? In Vierhauser et al. (2015) we showed that the first version of the approach is
sufficiently expressive for a real-world use case and constraints could be written rep-
resenting all requirements to be monitored at that point in time. Since no functionality
was removed during the development of version 2, we can safely conclude, that this is
still true. With our evaluation of RQ1 we thus here want to show that the new version
of the CDSL is expressive enough to represent the new requirements (cf. Sect. 4).

RQ2—Does the constraint checking approach scale to industrial needs in the con-
text of a real-world SoS? To evaluate the scalability of our approach, we monitored
a simulated version of Primetals Technologies’ PAS to measure the performance of
our approach. We updated the constraints used in the previous evaluation to the newer
version of the CDSL and added additional constraints containing new functionality
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to show the impact of the new features on the performance of constraint evaluation.
The previous evaluation of RQ2 (Vierhauser et al. 2015) started only with a limited
set of active constraints and activated two separate sets of constraints afterwards to
show the impact of dynamically adding constraints at runtime. The main part of the
evaluation however, was a 6-h run with all constraints activated. Since there were no
changes made to the components responsible for (dynamically) adding, modifying
and removing constraints at runtime, we here focus on evaluating and comparing the
6-h run with all constraints set active (“old” ones and new ones). We also discuss the
relation of constraint complexity and measured evaluation (execution) time.

6.1 RQ1: DSL expressiveness

To evaluate the expressiveness of our CDSL, we conducted five 2-h workshops as well
as several additional meetings with seven system experts to identify requirements that
have to be monitored at runtime in different systems or among system borders of
Primetals Technologies’ PAS. Altogether, about 40 requirements were found. At least
one constraint for each of them was developed. These requirements motivated the
implementation of the three constraint types (past occurrence, future occurrence and
data constraints) used in CDSL version 1. Since CDSL version 1 was capable of
representing all of these constraints, we demonstrated in Vierhauser et al. (2015) that
its expressiveness is sufficient for using it in a real-world industrial SoS.

Future meetings and workshops, after the release of the first version of our approach,
however, revealed that additional capabilities were necessary for the DSL-based
approach which we implemented as described above (cf. Sect. 5). Specifically, there
were six requirements regarding new DSL features and one requirement demanding
a new constraint type (composite constraints). Table 4 shows seven constraints from
the PAS demonstrating these requirements. Please note that we have simplified and/or
obfuscated some of the real events and data item names due to non-disclosure agree-
ments. Based on these positive experiences and the feedback we received from our
industry partner, we conclude that the new version is sufficiently expressive to use it
with a real-world SoS.

6.2 RQ2: scalability

In Vierhauser et al. (2015), we have shown that our approach is sufficiently scalable to
be applied to areal-world SoS. This evaluation was done by performing a 10-h run with
13 constraints. To show the effect of dynamically adding and removing constraints,
the evaluation started with only five active constraints. After an hour, four additional
constraints were added and finally, after another hour, four more constraints were
added. These 13 constraints were then active for a total of 6-h. Afterwards, constraints
were deactivated again stepwise in the last 2h of the 10-h run.

In this evaluation we focus on the part affected by the evolution of our approach.
Since no changes were made to the component capable of dynamically adding and
removing constraints at runtime, we omitted this part in our evaluation and repeated the
6-h run with all constraints being active to try to compare it against the first evaluation.
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Table 4 Seven constraint examples demonstrating the expressiveness of our DSL

Req.| Constraint Example

R1 Composite constraints
//at least one of the conmstraints A", "B’ or »C” must not lead to a
violation
composite constraint = constraint "A” or constraint "B” or constraint 7"C”

R2 Multiple data checks

//sequence check with data checks on multiple events in the sequence

trigger = if event ”"Start_Analysis” occurs

condition = events
" Temp-Analysis” where data(” general”, ”"temperature”) > 1250,
”Quality-Analysis” where data(” general”, ”qualityRating”) > 0.98,
"End_Analysis”

occur within 10 seconds

R3 Cross-event data access
//checks data values against other, previously occurred, events
trigger = if event ”LabAnalysisl” as ”Pointl” occurs
condition = events

"LabAnalysis2” as "Point2” where data(” general”,
Pointl” .data(” general”, ”"temperature”),
"LabAnalysis3” where data(” general”, "temperature”) < ”Point2” .data(
"general”, ”"temperature”)
occur ignore others within 1 hour

temperature”) <

R4 Multiple data checks for one event

//checks that more than five percent and more than two gigabytes free
storage are on the disk

trigger = if event ”"Disc_Analyzed” occurs
condition = data(”disk”,” frecPercentage”) > 5 and data(”disk”,” freeSpace”
) > 2048
R5 Event-based evaluation criteria

//checks that the defined sequence occurs before the mnext start ecvent of

th sequence occurs again
trigger = if event ”"Start_Analysis” occurs
condition = events

" Temp-Analysis” ,
" Quality_-Analysis”,
"End_-Analysis”

occur until event ”"Start_Analysis” occurs

R6 Multiple evaluation criteria

//checks that the defined sequence occurs within eight hours and before
the next start event of this sequence occurs again

trigger = if event ”"ProductionStarted” occurs

condition = events
» QualityAnalyzed” ,
”"ProductionEnded”

occur until event ”"ProductionStarted” occurs within 8 hours

R7 Flexible event sequences
//defines an event sequence that can occur in any order, but the second
event must not occur and the third event may occur
trigger = if event ”Tap-Start” occurs

condition = events
17 Slag-Start”,
?” Tap_Analysis” ,
» Tap_End”

occur in any order within 3 minutes
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Fig.7 Boxplots of median evaluation times (in ms) for all constraints

We used a simulator of a new version of the PAS for our current evaluation since
some of the requirements for version 2 of the DSL-based approach were the result of
newly introduced features and functionality in the PAS.

Another difference to the previous evaluation is the used system to execute the eval-
uation which now is a standard Desktop machine with an Intel(R) Core(TM) i5 CPU
@3.20 GHz 16 GB RAM running Windows 10 64-Bit. In order to retain comparabil-
ity with the previous evaluation, which used a PC with slightly lower computational
power, we re-ran the 6-h run using only the existing CDSL version 1 constraints (with-
out recompiling them to CDSL version 2) and then compared these results to our new
ones.

To show the scalability and applicability of our new DSL features, we developed
eight new constraints (CST-14-CST-21, cf. Table 5). Our evaluation thus in total
comprises 8 new constraints and the 13 constraints of the previous evaluation, which
were recompiled using the new version of our approach. The semantics of the 13
constraints is identical, however, the code that is executed by the constraints is now the
reengineered version 2 code of our approach. We measured the number of constraint
checks and the (median) evaluation time, i.e., the time required for executing the
method evaluating the constraint.

Table 5 shows the used constraints and the newly evaluated median evaluation time
of the 13 previously existing CDSL version 1 constraints wherever a re-evaluation was
possible with the new PAS simulator. It was not possible to re-evaluate seven of the 13
old constraints since some events, their data and some systems in the new version of the
PAS have changed which made it impossible to re-evaluate them without adapting and
recompiling them. Thus we only present comparable MET v1 values for constraints
CST-3, CST-5, and CST-8-11. For constraints CST-1, CST-2, CST-4, CST-6, CST-7,
CST-12, and CST-13 we present the original results from Vierhauser et al. (2015) in
square brackets as they cannot directly be compared due to the changed machine.
Please note that details about the constraints are not shown due to non-disclosure
agreements. We, however, explicitly indicate their complexity in Table 5 using the
following levels 1 to 5, with 5 being the highest complexity:
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Fig.8 Distribution of median evaluation times for future occurrence constraints (CST-01, CST-02, CST-09,
CST-10, CST-12, CST-14, CST-16, CST-18)

1. A single data check in the constraint’s condition (cf. Listing 1 (third constraint)).

2. Multiple data checks in the constraint’s condition or simple event occurrence/tim-
ing check (cf. Listing 1 (second constraint)).

3. Complex event occurrence/order/timing with multiple events in the constraint’s
condition or complex data check (cf. R2 in Table 4).

4. Combined event occurrence/order/timing and data check (cf. R3 in Table 4).

5. Multiple combined types of constraints (cf. R1 in Table 4).

To reduce the impact of the operating system and other programs and services
running in the background, we performed three evaluation runs and present their
median results in this section. During the 6-h simulation run of the PAS, 103,761
events were monitored and 73,705 constraint checks were performed resulting in an
average of 205 constraint checks per minute. Table 5 shows the median evaluation
time of each constraint (in ms) and the number of checks performed per constraint.
The memory consumption remains between 18.09 MB (lower quartile) and 27.7 MB
(upper quartile).

Figure 7 depicts box plots of the median evaluation time for all 21 constraints.
Figures 8, 9 and 10 depict the distribution of median evaluation times for the three
different types of constraints (future occurrence, past occurrence and data constraints).
The constraints with the highest MET all have a complexity level of 3 or higher.
Figure 11 shows box plots in which the 21 constraints’ median evaluation times have
been grouped by complexity level. One can nicely see the increase of the median
evaluation times with complexity level, while the overall performance still stays very
good (the highest medians are just slightly above 3 ms). Complexity level 5 is an
exception, which can be explained by the fact that in our evaluation on this level two
composite constraints combine sub-constraints with a very good performance. We
discuss details on evaluating the performance of the composite constraints below.

To sum up the results of the evaluation, the MET of all constraints ranges from
0.08 ms (CST-04) to 16.7 ms (CST-05). Every CDSL version 2 constraint that could
be compared to its version 1 pendant, except CST-05, became slightly faster. CST-05
performed worse than in CDSL version 1 because in the reengineering we decided to
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Fig. 11 Boxplots of median evaluation times (in ms) for all constraints, grouped by complexity level (cf.
Table 5)
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Table 5 Overview of the 21 constraints used for the evaluation, showing their types (T) and indicating
their complexity level (CL), and describing the number of checks performed (# checks) and the median
evaluation time (MET) for each constraint during the 6-h evaluation run for CDSL version 1 and 2

Const. T CL* Name # Checks MET vl [ms]b MET v2 [ms]
CST-01 F 2 PlanChangeUserCheck 495 [1.38] 0.44
CST-02 F 3 CastSequence ValidityCheck 496 [10.55] 0.57
CST-03 D 3 CheckCrossSectionRange 495 8.78 2.40
CST-04 D 1 CheckOptiRunld 498 [22.00] 0.08
CST-05 P 4 CheckCastingArmProcedure 28 14.24 16.70
CST-06 D 1 CheckAvailableDiskSpace 13 [0.66] 0.15
CST-07 D 1 CheckAvailableStorage 13 [0.60] 0.14
CST-08 D 2 CheckCastWatchdogStates 7539 0.36 0.20
CST-09 F 3 CheckOptiCalcRun 436 0.76 0.43
CST-10 F 3 CheckOptiRunConsistency 496 1.05 0.50
CST-11 D 2 CheckStrandNumbers Valid 497 4.66 0.16
CST-12 F 3 CheckOptiRunCycle 505 [9.71] 0.61
CST-13 P 3 CheckStrandSpeedLength 44,370 [1.55] 1.04
CST-14 F 4 CheckOptiRunCyclelnclData 504 3.20
CST-15 C 2 DiskChk (CST-06 & CST-07) 13 0.50
CST-16 F 4 OptiPrcCrossEventDataCheck 499 0.61
CST-17 D 2 CheckDiskSpaceAndStorage 13 0.36
CST-18 F 4 ExtendedOptiRunCycleCheck 530 0.57
CST-19 C 5 OptimizerStandardConfCheck

(CST-14 & CST-16 & CST-18) 1027 2.60
CST-20 1 ChecklIfSimulationRun 7587 0.11
CST-21 C 5 OmitWatchdoglIfSimulation

(CST-20 & CST-08) 7651 0.45

T type of constraint, F future, D data, P past, C composite

4 CL, complexity level: 1 (lowest)-5 (highest); details described in text

b The MET vl values in square-brackets are the original results from Vierhauser et al. (2015), which cannot
directly be compared since this evaluation had to be performed on another PC with different hardware. The
other MET vl values are the results of the original constraints from the former evaluation, that could be
executed on the new machine to make them comparable

retrieve more events for past occurrence constraints that do not use the “previously”
keyword in CDSL version 2. The processing of those additional events requires more
time than before. The benefit of this decision is that it allows us to extract more,
and more accurate information about constraint violations. The drawback is that it
increases the evaluation time.

We designed some of the new constraints based on existing ones, however, extended
with new functionality of CDSL version 2. This allows us to directly compare these
constraints to identify the impact of the new functionality on the performance of the
constraint. For instance, CST-18 is the same as CST-12, but includes a negation and
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an optional event. Our evaluation shows that the new capabilities have no significant
impact on this constraint’s performance [e.g., 0.04 ms (CST-12 vs. CST-18)].

To analyze the performance of composite constraints and to identify their over-
head, which results from additional trigger checks and additional code to combine
the constraints’ results, we compared their execution time with the execution times
of the constituent constraints. To compare the execution times of a composite con-
straint and its sub-constraints, we thus summed up the evaluation times of all
sub-constraints multiplied by their evaluation count and compared it to the eval-
uation time of the composite constraint multiplied with its evaluation count. For
instance, for CST-19: composite constraint: 1027#2.60=2670.20 ms; sub-constraints:
504%3.204+499%0.61 +530%0.57=2219.29 ms. The overhead of the composite con-
straint therefore is 0.44 ms per evaluation in this case. The overheads of the other
composite constraints are 0.21 ms (CST-15) and 0.14 ms (CST-21). Also, while the
complexity of composite constraints is rather high (as they combine multiple sub-
constraints; cf. Table 5), their overall median evaluation time remains quite low. We
thus consider the performance of composite constraints as sufficient (also see Fig. 11).

Although we did not observe as many events in this evaluation compared to the
previous 10-h run reported in Vierhauser et al. (2015), the total number of constraint
checks, as well as the number of constraint checks per minute is higher in this evalu-
ation. Also, we have evaluated more complex constraints, e.g., combining sequences
of multiple events with multiple data checks or even combining multiple constraints.
Our evaluation demonstrated that there is no increase in the evaluation time over the
whole run (cf. Figs. 7, 8, 9, 10) and we showed that the MET of nearly all constraints
improved in comparison to the first version of the DSL-based approach, especially
also for more complex constraints. Therefore, we claim that our second version of the
DSL-based approach is still scalable and applicable to a real-world SoS and we could
even improve scalability compared to the first version.

7 Discussion, lessons learned and threats to validity

Our evaluation demonstrates that the new DSL-based approach is expressive and scales
to a real-world SoS. Here we also discuss improvements regarding the extensibility
of our new approach compared to the first version. We further revisit the lessons we
reported in Vierhauser et al. (2015) and report new lessons we learned when developing
version 2. Further open issues and future work are discussed in the conclusions.

7.1 Extensibility

Due to the close coupling between DSLs and the systems they have been designed for
and due to the YAGNI principle, it can be expected that the DSL will (again) have to
be adapted at some point in the future. One of the major goals of this work thus was
to address this issue by designing the DSL to make it more extensible.

The most important changes with respect to extensibility from version 1 to ver-
sion 2 were unifying parts of the grammar, improving the modularization of the whole
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grammar, redesigning of the code generation and the code executed by the constraints,
and the testing framework (cf. Sect. 5). Maintainability and extensibility strongly ben-
efit from reusing existing software components. Therefore, creating a highly modular
and consistent DSL is very likely to reduce the costs for future changes. This is what
the redesign of the grammar and the code generation mainly focused on. Further-
more, every change made to the DSL has to be tested thoroughly. Since most of our
DSL’s functionality is interdependent, side effects of code changes are very likely to
occur. Therefore changes require testing the whole functionality of the DSL rather
than testing just the components in which the changes were actually implemented. As
mentioned in Sect. 5.3 only the implementation of the automated testing framework
allowed sufficient testing, as well as regression tests with reasonable costs.

To show the effects of our improvements, we compare the evolution process using
an example requirement: assume in the future it becomes necessary to support writing a
constraint that checks whether temperature sensor data works with certain temperature
models. For simplicity’s sake, we imagine the temperature model in this example as an
arbitrary function f{x) representing a required temperature value for a given progress x
of the current process. The required extensions can thus be broken down into two main
actions: changing the grammar to express functions and implementing the functions.

In version 1 of our DSL-based approach, implementing this requirement would
have worked as follows: to represent this new kind of data check in the grammar,
one has to add a new NTS containing the grammar for the check. This NTS is then
added to the available data items using a disjunction. This may look like “Model :
'model (* path=STRING ’,’ progress=DOUBLE ') ’”. Afterwards, one
has to create a method for the Xtext parser which has to be executed if a model data
item was defined. This method has to create the code for loading and representing
the model, as well as creating a new variable in which the retrieved value for the
given progress from the model has to be stored for the following comparison. It is
crucial that this code snippet does not interfere with the rest of the generated code
and that variables aren’t defined twice (e.g., if multiple data checks were defined).
As this code actually is Xtend code instead of Java code, there are no Java syntax
checks at development time, which increases the need for extensive testing of this
component. Finally, the developer has to add missing imports for the new data check
in the constraint template. As testing has to be done manually in the first version of our
approach, the developer has to create mockup probes to simulate a real system, as well
as several sample constraints to test the various constraint checking possibilities. The
results of the tests also have to be checked manually. Referring to Sect. 4.1, the required
grammatical changes would be of Level 1 (DSL syntax adaptation), the changes to the
code generation would be of Level 3 (Code generation adaptation) and the changes
in the constraint template would be of Level 5 (Constraint Engine adaptation). The
overall level for these changes would therefore be Level 5, having a medium to high
impact.

In comparison to this, we consider the implementation in the second version of our
approach as more easy and straightforward: the implementation of the data check in
the grammar works similar to version 1, since this part of the grammar was already
sufficiently modularized and did not require any further improvement. The required
Xtend code—which has to be called if a model is defined—can, however, be limited
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to a simple object instantiation like “new ModelDataltem(*<< model.path >>",<<
model.progress >>)”. To implement the code for loading and representing the model,
a Java class ModelDataltem, which derives from Dataltem has to be created. After-
wards, the developer has to define additional test cases in the testing framework for
the new constraints, which can then be executed and evaluated automatically by run-
ning the testing framework. Additionally, every previously existing test case will be
checked also to ensure that no other functionality of the approach was affected by this
change. With regard to the levels of change (cf. Sect. 4.1), the impacts for the changes
to the grammar would still be of Level 1 and the changes to the code generation would
also be of Level 3. However, the constraint engine does not need to be adapted. The
overall change level therefore is Level 3 with estimated impacts rated as minor to
medium.

The major improvements that can be seen from this sample scenario are the impact
of the reengineering of the architecture—particularly the complex and error-prone
Xtend code generation part—and the possibility to easily create test cases and per-
form automated regression testing. Based on this discussion and the effects of our
improvements shown in the sample evolution scenario, we claim that we have signif-
icantly improved our DSL’s extensibility and maintainability.

7.2 Lessons learned

In this section we reassess the lessons we had learned earlier and report new lessons
we learned when evolving our approach.

Systems of systems require an iterative language design For both cases, when devel-
oping the first version of the DSL and when developing the second version, several
people were involved in the evolution of the language. To meet their requirements, we
had to apply an iterative approach to design the new language and its features, i.e., we
frequently presented and iteratively refined our solution.

Keep the YAGNI (“you aren’t gonna need it”) principle in mind when developing a
DSL When starting to collect the requirements for the first version of our DSL, many
different alternatives and ideas on what could be monitored using the constraint-
based approach were identified. To keep the language simple and to meet our industry
partner’s needs, we decided to stick only to those functionality with an actual use
case. When evolving the language, we also had several ideas for possible language
features, which could be improved or extended. However, most of them turned out to
be not needed by our industry partner and thus would make the language unnecessary
complicated. We conclude that the YAGNI principle was very beneficial for the DSL’s
evolution since it avoids possibly unnecessary functionality in the DSL, which might
have to be removed or adapted in future versions.

Simplify and automate extending the DSL When developing the first version, tech-
nologies were chosen that allow extending the DSL easily, since it was already expected
that it will have to be extended in the near future. When the CDSL had to be evolved,
we noticed that using such technologies is indeed essential, however, just relying on
these technologies’ capabilities is not enough. Xtext and Xtend make it easy to develop
a DSL, to compile DSL code to a target language like Java, and to provide end-user
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support for developing DSL code. However, to successfully extend a DSL, the DSL
itself as well as the code generated by the constraint compiler have to be extensible too.
This was the crucial reason why we re-developed the grammar and code generation
to further increase the extensibility and adaptability of our approach.

Keep the mapping of constraint DSL to constraint engine flexible Since we did not
have to cope with dramatic increases of the required performance of our constraint
engine, there was no necessity yet to actually exchange the engine. We still recommend
to keep the mapping between the used components flexible to avoid possibly upcoming
performance problems and allow the future replacement of the engine.

Runtime monitoring requires dynamic constraint management The capabilities for
adding, removing and modifying constraints at runtime were excessively used since
the first release of our approach. Also the study on the usefulness of the REMINDS
Framework and the CDSL (Rabiser et al. 2016) showed that support for dynamic
constraint management is crucial for runtime monitoring in SoS which confirms our
lesson.

We conclude that our previous lessons learned [cf. (Vierhauser et al. 2015)] still
hold after the evolution of the DSL performed over the course of about one and a half
years. Additionally, we report new lessons we learned during the evolution, which
might be useful for other researchers and practitioners working on/evolving DSLs:

Design the DSL to keep the effort for adaptations minimal As mentioned before,
relying on the capabilities of technologies such as Xtext and Xtend in terms of exten-
sibility is insufficient. To successfully evolve a DSL with minimal required effort, all
components have to be designed to be extensible. This requires to think about pos-
sible future evolution scenarios when developing or evolving a DSL and to adapt its
architecture and interfaces based on this knowledge.

Consider backward compatibility When a DSL is evolved, typically many differ-
ent instances (i.e., constraints) written with the DSL do already exist. Porting these
instances to the DSL’s new version often causes a huge effort, both, on the developers’
and on the users’ side. Removing functionality from the DSL might even make it
impossible to port existing instances. We suggest to omit these problems by avoiding
unnecessary functionality from the beginning (YAGNI), only making changes that
extend/improve the DSL, and keeping backward compatibility as far as possible.

Automated testing is crucial As mentioned in Sect. 5.3, manual testing of the DSL-
based approach became infeasible in our case quickly. Due to the variety of different
DSL instances (i.e., constraints), testing DSLs is especially challenging. To cope with
this ever-increasing complexity when evolving a DSL, support for automated testing of
the DSL is crucial. In our case, we developed a testing framework which automatically
compiles, executes and evaluates predefined test cases. This testing framework can also
be used for regression testing on every update of the DSL to check for possible errors
resulting from side effects of changes.

7.3 Threats to validity

In terms of external validity, our results and findings are based on a single directed
SoS (in two versions) from the domain of industrial automation. We thus cannot claim
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that the DSL is capable of covering all possible types of constraints in other systems.
However, our knowledge of other systems suggests similar constraint patterns. Due
to the flexibility and extensibility of both, the DSL and the underlying architecture it
is possible to consider additional constraint types if needed. Also, the requirements
and constraints selected for the evaluation might not cover the full range of require-
ments existing in the PAS. However, we consider our evaluation a good starting point
representing a realistic case.

The evaluation focuses on the expressiveness of the DSL (RQ1) and on the scala-
bility of the constraint engine (RQ2). We deliberately did not discuss end-user tools in
detail as this is part of a separate study (Rabiser et al. 2016) assessing the usefulness
of the different tools and editors for writing and managing constraints. However, the
constraints and the DSL were developed together with engineers of our industry part-
ner leading to rapid feedback, which resulted in several adaptations and improvements
during the development process, for both versions of our approach.

Regarding the rather small number of constraints used in our scalability evalu-
ation (21), the number of constraint instances created at runtime and the number
of constraint checks performed have a much higher impact on the scalability of our
approach. We demonstrated in our evaluation that even for complex constraints leading
to many instances and checks our approach does provide immediate feedback.

Our evaluation of the scalability of our constraint-based approach in Sect. 6.2
demonstrated that it is indeed scalable and applicable to a real-world SoS and that we
could even improve scalability when compared to the first version, especially also for
complex constraints. In this paper, we did not focus on the monitoring infrastructure
(probes and event and data processing) but on the constraint evaluation. As constraints
are evaluated on a separate machine, the constraint checking has no influence on the
monitored software (no overhead in this regard). Also, we already have evaluated the
overhead of the monitoring infrastructure in earlier work (Vierhauser et al. 2016b)
and could confirm that the underlying infrastructure is capable of handling a high
amount of events. The earlier evaluation, for example, showed that the overhead for
our probes ranges from 1 to 13% for typical instrumentations, but can go up to 70%
when serializing complex data structures. As probes are meant to be small, atomic code
fragments only collecting specific data in the SoS, and serializing complex objects is
rather the exception, this has not been an issue in our industrial context so far.

8 Related work

Different research communities have been developing approaches for monitoring
systems, e.g., to detect violations of requirements of certain properties at runtime.
Examples include requirements monitoring (Vierhauser et al. 2016a; Maiden 2013;
Robinson 2006; Fickas and Feather 1995), resource and event monitoring (van Hoorn
et al. 2012; Bubak et al. 2004; Ludwig et al. 1997), complex event processing (Volz
et al. 2011; Luckham 2011), runtime verification (Calinescu et al. 2012; Ghezzi et al.
2012), and monitoring of probabilistic properties (Cailliau and van Lamsweerde 2017,
Zhang et al. 2011; Sammapun et al. 2005). Our own systematic literature review pro-
vides a detailed overview (Vierhauser et al. 2016a). Other researchers have also focused
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on providing an overview of existing monitoring approaches, e.g., Dwyer et al. (1999)
discuss patterns in property specifications for finite-state verification, Delgado et al.
(2004) provide a taxonomy and catalog of runtime software fault monitoring tools,
Kanstrén (2011) presents a systematic review and taxonomy of runtime invariance
in software behavior, and Autili et al. (2015) align qualitative, real-time, and prob-
abilistic property specification patterns. What can be learned from all these reviews
and surveys is that a wide variety of different constraint languages exist for defining
requirements, system properties, or desired event sequences. We have presented nine
examples of constraint languages in Sect. 2 and analyzed their support for three chal-
lenges in SoS monitoring (see Table 1). We demonstrated that they do not fully support
all three challenges. This is why we developed our own DSL in the first place. As we
have described in detail above, we support coping with the diversity of constraints
in large-scale systems, support the incremental definition and runtime management
of constraints, and provide end-user support for constraint definition (Rabiser et al.
2016).

Developing domain-specific languages to support (industrial) end users in complex
tasks has been discussed in detail in related work, e.g., by Hermans et al. (2009) in
the area of Web services and by Voelter and Visser (2011) in the area of product
line engineering. Hermans et al. (2009) have identified several success factors for the
use of DSLs in an industrial context: reliability, usability, productivity, learnability,
expressiveness, and reusability. Our experiences confirm these success factors (Rabiser
et al. 2016).

As also confirmed by our case, due to volatile user requirements and new technolo-
gies DSLs, similar to the software systems they describe or produce, are subject to
continuous evolution. A lot of research has already been published on DSLs and their
evolution. We have conducted a systematic mapping study to structure the research
field of DSL evolution (Thanhofer-Pilisch et al. 2017). As we described in this mapping
study, since 2005 an increase of papers focusing on DSLs can be observed, showing
the growing relevance of this topic over the last years. Papers are, however, mostly
solution proposals and experience papers (Wieringa et al. 2006). This might be caused
by the still young topic of DSL evolution, i.e., in early phases many new solutions and
corresponding experiences are typically published, while validation and evaluation of
already existing solutions are less frequent. However, the fact that only few evaluation
research exists so far is still an indicator that more studies should be conducted. With
this paper, in which we provide an evaluation of our evolved DSL, we contribute to
this lack.

Our systematic mapping study (Thanhofer-Pilisch et al. 2017) also revealed three
DSL evolution trends in existing work, i.e., seven approaches focus on (i) automating
DSL evolution (often with a special focus on automating the migration of old DSL
instances to the current grammar) (Nikolov et al. 2015; Juergens and Pizka 2006;
Meyers and Vangheluwe 2011; Vermolen and Visser 2008; Schmidt et al. 2013; Pizka
and Jurgens 2007; De Geest et al. 2008), four approaches put their focus on (ii) efficient
DSL creation and maintainability (Albuquerque et al. 2015; Cazzola and Poletti 2010;
van den Bos and van der Storm 2013; Izquierdo and Cabot 2012), and two approaches
emphasize the (iii) reuse of (parts of) existing DSLs (Degueule et al. 2015; Zschaler
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et al. 2009). Our own work also follows this trend and focuses on (ii) and (iii) as
discussed above.

Another conclusion of the systematic mapping study (Thanhofer-Pilisch et al. 2017)
was that more publications reporting lessons learned from practical DSL evolution are
needed. This is also something we provide with this work.

9 Conclusions and future work

In this work we described how we evolved a DSL-based approach for defining and sup-
porting checking constraints when monitoring systems of systems at runtime. When
evolving the DSL-based approach to its second version, we re-developed its gram-
mar and the code generation components which parse the constraint and generate the
required Java code to execute the defined checks. The aim of re-developing the gram-
mar was to add additional functionality, to increase its modularization to support reuse
and to ease future changes, as well as to remove usability flaws. Re-developing the
code generation was necessary to increase the maintainability and extensibility of the
approach to support future evolution scenarios. Additionally, we developed a testing
framework to automate testing the approach since manual testing became infeasible.

In our evaluation, we showed that the new version of the CDSL is more expressive
than the previous one and sufficiently expressive to allow its use in a real-world SoS.
Furthermore, we assessed the performance of our approach and showed that it is
scalable enough to apply it to a SoS with a realistic number of occurring events and
corresponding constraint checks. Lastly, we discussed the performed changes and their
impact on the extensibility of our approach. We revisited the lessons learned when
developing the first version of our approach and presented additional lessons learned
when evolving the approach to its second version, i.e., that it is essential to design the
approach in a way that keeps the effort for adaptations minimal, to enable backward
compatibility as far as possible, and to support automated testing.

While we could improve our DSL-based approach significantly, some issues still
remain motivating future work. Currently, data checks on events are evaluated after
the rest of the constraint has passed the evaluation. Therefore, the evaluation process
might wait until future events occur to verify a specified event sequence, even though
the data check of the first event might already violate, which makes the rest of the
evaluation obsolete. The new architecture for constraint evaluations would allow to
change this behavior to evaluate data checks as soon as possible, which we assume
would result in an even lower constraint evaluation time. Automated constraint migra-
tion is another feature we plan to develop. We are also currently exploring constraint
mining (Krismayer et al. 2017), i.e., analyzing recorded event streams, e.g., for recur-
ring patterns, to generate constraints. We also do expect further changes to come up
in the future due to changing requirements and new use cases. When making further
changes to the DSL, we could then also evaluate the effort for their implementation
to further assess the effects of the increased extensibility of our approach.
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Appendix: grammar of the CDSL v.2

Listing 5 Grammar of our constraint DSL for specifying past occurrence, future occurrence, and data
constraints as well as composite constraints combining these types.

Constraint: ConstraintDefinition | CombinedConstraintDefinition

CombinedConstraintDefinition: combined constraint = constraint ’constraint_name’ {and constraint ’
constraint_name’} | {or constraint ’constraint_name’}

ConstraintDefinition: TriggerCondition [DataCheckCondition] (PastCondition | FutureCondition)
TriggerCondition: trigger = if event EventDefinition occurs

EventDefinition: ’event_type’ [EventScope] [as ’event_shortcut_key’] [where DataCheck]
DataCheckCondition: condition = DataCheck

PastCondition: condition = [!] event EventDefinition has occurred PastEvalCriteria
FutureCondition: condition = (SingleFuture | SequenceFuture) FutureEvalCriteria [StopCriteria]
DataCheck: DataCheckType {and DataCheckType} | {or DataCheckType}

DataCheckType: ValueCondition | RangeCondition

RangeCondition: within ’(’ Dataltem , ’within_percentage’ % , Dataltem ’)’

ValueCondition: Dataltem RelationalOperator Dataltem

Dataltem: DataKey | DataValue | ConfigurationParameter | ExternalDataltem

ExternalDataltem: external ’(’ event EventDefinition , [EventSelection ,] DataKey )’
EventSelection: select *(° (’latest’|’next’) ’)’

DataKey: [’event_shortcut_key’ °.’] data ’(’ ’data_item_name’ [, ’data_key_path’] [, (’amount’ |

Function)] ’)’
ConfigurationParameter: config *(’ [(static | runtime) ,] [EventScope ,] ’config_key’ ’)’
EventScope: from scope ’(’ (’scope_id’ | same) ’)’
FutureEvalCriteria: [in any order] [ignore others] [until EventDefinition occurs] [within Time]
StopCriteria: evaluation after Time
SingleFuture: [!] event EventDefinition occurs
SequenceFuture: events SequenceEvent {, SequenceEvent} [EventScope] occur
SequenceEvent: [? | !] EventDefinition
PastEvalCriteria: [previously] [since EventDefinition occurred] [in the last Time]
Function: size | unique | contains
DataValue: DOUBLE | STRING

Time: INT TimeUnit
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TimeUnit: seconds | minutes | hours | days
BoolOperator: and | or

RelationalOperator: > | >= | < | <=1 1= | =
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